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Fidelity and information in the quantum teleportation of continuous variables
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Ideally, quantum teleportation should transfer a quantum state without distortion and without providing any
information about that state. However, quantum teleportation of continuous electromagnetic-field variables
introduces additional noise, limiting the fidelity of the quantum-state transfer. In this article, the operator
describing the quantum-state transfer is derived. The transfer operator modifies the probability amplitudes of
the quantum state in a shifted photon-number basis by enhancing low photon numbers and suppressing high
photon numbers. This modification of the statistical weight corresponds to a measurement of finite resolution
performed on the original quantum state. The limited fidelity of quantum teleportation is thus shown to be a
direct consequence of the information obtained in the measurement.

PACS numbd(s): 03.67.Hk, 42.50:-p

[. INTRODUCTION tation resembles a nondestructive measurement of light field
coherence with a measurement resolution given by the en-
Quantum teleportation is a process by which the quantuntanglement of B and R.
state of a system A can be transferred to a remote system B
by exploiting the entanglement between system B and a ref-
erence System R. Ideally, no information is obtained abouﬁ. MEASURING THE ENTANGLEMENT OF UNRELATED
system A, even though the exact relationship between A and FIELD MODES
R is determined by measuring a set of joint properties of A
and R. While the original state of A is lost in this measure- step in quantum teleportation requires a mea-
ment, it can be recovered by deducing the relationship be- .
tween A and B from the original entanglement between Bsurement of the entanglement bgtween mput system A and
and R and the measured entanglement between A and B. reference system R. _Ideally, _thls projective measurement
The original proposal of quantum teleportatipt] as- does not provide any information about properties of A by
sumed maximal entanglement between B and R. However, [fself.
is also possible to realize quantum teleportation with non- N the case of continuous field variablgs 3], the mea-
maximal entanglement. In particular, such a teleportatiorsured variables are the differenge =x,—xg and the sum
scheme has been applied to the quantum states of light field, =y, +y of the orthogonal quadrature components. The
modes[2,3], where maximal entanglement is impossible eigenstates of these two commuting variables may be ex-
since it would require infinite energy. A schematic setup ofpressed in terms of the photon-number stigsng) as
this scheme is shown in Fig. 1. This approach to quantum
teleportation has inspired a number of investigations into the
dependence of the teleportation process on the details of the Meastrement of
physical setud4—6]. In this context, it is desirable to de- Bz +iy,
velop compact theoretical formulations describing the effects Output
of this teleportation scheme on the transferred quantum state $ field
Originally, the teleportation process for continuous vari- = Y+ //7
ables has been formulated in terms of Wigner functidis ’\ /

Recently, a description in the discrete photon-number base

has been provided as wdlf]. In the following, the latter D(g)
approach will be reformulated using the concept of displaced

photon-number states, and a general transfer operatol A R B
T(x_,y.) will be derived for the quantum teleportation of a sgﬁm‘r

state associated with a measurement result ofandy, . Input

field OPA

This transfer operator describes the modifications that the
guantum state suffers in the teleportation as well as the in-
formation obtained about the quantum state due to the finite FIG. 1. Schematic representation of the quantum teleportation
entanglement. It is shown that this type of quantum teleporscheme.
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1 = ence field R thus provides the means to choose between
|IB(AR))=— > Da(B)|n;n) complementary measurement types even after the measure-
J i=o ment interaction between input field A and reference field R
. has occurred.
with  x_|B(A,R))=ReB)|B(AR)) Within the quantum-state formalism, the initial state of
A the entangled fields R and B may be written[ @s]
and y.|B(A.R)=Im(B)|B(AR)), (1) )
where the operatod A(3) is the displacement operator act- la(R.B))= vl—ngo q"[n;n). ®)

ing on the input field A, such that
Thus, the photon numbers of the reference field R and the

Da(B)=exp(2i Im(B)xa—2i RE&B)Ya) remote field B are always equal. However, low photon num-

. A . bers are more likely than high photon numbers, so the two-

with  DA(B)XaDA(B)=Xa+Re() mode entanglement is limited by the information available
R o R about the photon number of each mode. In a measurement of

and DL(ﬁ)yADA(ﬂ)zyAJr Im(B). (2)  the entanglement between field A and field R, this informa-

tion about R is converted into measurement information
Of course, the coherent shift could also be applied to field Rapout A, thus causing a decrease in fidelity as required by the
instead of field A. However, in the representation given byyncertainty principle.
Eg. (1), it is easy to identify the quantum state associated A measurement of the entanglement between field A and
with a photon number of the reference field R. field R projects the product stafes,)®|q(R,B)) into a

If the quantum statéyr) of the reference field R is quantum state of the remote field B given by
known, the measurement result provides information on the

quantum statés,) of field A through the probability distri- 1-? & R
bution P(8) given by |¥s(B))="\/ Tnzo q"[nn|Da(=B)|¢a),  (6)
o0 2
P(B)= i z <¢A||5A(B)|n><lﬂR|n> where the measurement probability(B8) is given by
T |n=0 (¢s(B)|¥s(B)). Thus the measurement determines the dis-

1 placemeniB between field A and field B, resulting in a quan-
= (¢ |5A(3)| P2, tum statd ¢/5(B)) that appears to be a copy of the input state
™ |n), displaced by- 8. However, the measurement informa-
tion obtained because low photon numbers are more likely
than high photon numbers in both R and B causes a statisti-
cal modification of the probability amplitudes of the photon-
number states in the remote field B.
Effectively, the measurement of entanglement projects the The final step in quantum teleportation is the reconstruc-
guantum state of field A onto a complete nonorthogonation of the initial state from the remote field by reversal of
measurement basis given by the displaced reference statdse displacement. The output state then reads
|%). The completeness of this measurement basis is given

by |Woul B))=T(B)|a)

where |¢a>=n§0 (n|gr)*|n). &)

1 25 R *\ /0% DT R =] A 1-g° & . ~

Wf d BD(B)|¢R><¢R|D (:8)—1. (4) with T(,B)Z Wq nz:o anA(B)|n><n|DA(_B)-
In the case of “classical” teleportation, the reference field R ™
is in the quantum-mechanical vacuum sthte=0). There-
fore, the measurement of the field entanglement giveis by
projects the incoming signal field A directly onto a displaced
vacuum state.

Note that this output state is not normalized because
(Yol B)|¥oud B)) defines the probability of the measure-
ment results3. The complete process of quantum teleporta-

tion is thus summed up by the transfer operaibg).

IIl. QUANTUM TELEPORTATION
IV. TRANSFER OPERATOR PROPERTIES

In the general case of quantum teleportation, the quantum R
state of the reference field R cannot be determined locally The transfer operatdr(B) determines not only the prop-
because of its entanglement with the remote field B. Thisrties of the quantum state after the teleportation process
indicates that the type of measurement performed is unfollowing a measurement result ¢f for the field entangle-
known until the remote system is measured as well. Thenent between A and R, but also the probability of obtaining
meaning of the measurement resgltdepends on the un- the resultg itself. The probability distributiorP(B) is given
known properties of the remote field B. The entangled referby
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P(,B):<¢A|:r2(,8)|¢A> the displaced photon-number increases. The g:hanges in the
quantum state that are responsible for a fidelity below one
* . correspond to this change in the statistical weight of the
2n _ 2 . . . . .
ZO q°(n|Da(—B)|¥a)|*. (8)  quantum-state components. This situation is typical for
" guantum-mechanical measurements, since maximal quantum
Since the prefactog” is larger for smalln, a measurement coherence between two components of the quantum-state re-
result of 8 is more likely if the photon number of the dis- duires equal probability amplitudes for each component.
placed statdSA(—,B)th) is low. It is possible to identify Making one quantum-state component more likely than an-

the displaced photon number with the square of the fielé)ther necessarily diminishes quantum cohereSge

. ) In order to clarify the type of measurement information
difference betweeg and the actual field value_of_ A. There- obtained, it is convenient to represent the transfer operator
fore, a measurement result 8fmakes large deviations of the

field A from this value of8 unlikely. T(B) in terms of coherent states. This representation is easy
The transfer operato'i"(B) also determines the relation- © obtain by using the formal analogy o 8) with a thermal

ship between the input state and the output state. Since it R10ton-number distribution. The result reads
the goal of quantum teleportation to achieve identity between

1—q?

w

the input state and the output state, the overlap between the_AI_ _ 1-¢9° 42 1-q 2
two states may be used as a measure of the fidelity of quan- (B)= ¢ S I |a=BI*[la)(al.
tum teleportation. For a single teleportation event associated (13)

with a measurement result @, this fidelity is given by

1 In the limit of q—0, the transfer operator thus corresponds
F(B)= =— [(¥al T(B)| )| (99  to a projection operator on the coherent st.lqﬁie. As g in-

P(B) creases, the operator corresponds to a mixture of weighted
projections that prefer coherent states with field values close
to B, distorting the field distribution of the input state.

The information obtained in the measuremeniBodbout
he original quantum stat¢y,) is therefore information
bout the coherent field amplitude. The loss of fidelity is a
necessary consequence of the projective nature of quantum
by measurementg9,10]. If one keeps track of the information
contained in the measurement resiland combines it with
Fav.zj d?g P(/g)F(IB):f d?B|(Yal T(B)|¥a)|?. information obtained from measurements of the output state
(10 | ol B)), the complgte process pf information transfer from
A to B can be described by a single quantum measurement
applied directly to the original input stajé,).

For instance, the fidelity of quantum teleportation for a
photon-number state displaced Byis exactly 1. However, it

is unlikely thatg will be exactly equal to the displacement of
the photon-number state to be teleported, so the average
delity will be much lower. The average fideligy,, is given

Since the transfer operatd( 8) is different for each telepor-
tation event, the output field states show unpredictable fluc-
tuations. These fluctuations may be expressed in terms of &I. VERIFICATION OF QUANTUM-STATE STATISTICS

nsity matrix . . . .
density ma The output of a single teleportation process involving a

pure-state inpulty,) results in a well-defined pure-state out-

Pout= J d*BT(B)|¢a)( YAl T(B). (1D putT(B)|wa). Since the statistical properties of this state are

modified by the information obtained in the measurement of

In terms of this mixed-state density matrix, the average fi-3, the output state is different from the input state, as given

delity reads by the fidelity F(8) defined by Eq(9). However, this dif-

R ference shows only in the statistics obtained by measuring

Fav={Ualpoul ¥a)- (120 the output of an ensemble of identical input states. In other

) o . words, there is no single measurement to tell us whether the

However, the measurement mformanqﬂlls available as  output quantum state is actually identical to the input state.
classical information, so the density matfiy,; actually un-  Nonorthogonal quantum states may always produce the same
derestimates the information available about the output fieldneasurement results. The verification process following the
In particular, a verifier checking the fidelity of the transfer in quantum teleportation is therefore a nontrivial process re-
B can know the exact output state based on the knowledge a@jfuiring the comparison of measurement statistics that are

the input state and the measurement regult generally noisy, even for a fidelity of one.
In the experimentally realized teleportation of continuous
V. FIDELITY AND INFORMATION variables reported if3], the verification is achieved by mea-

R suring one quadrature component of the light field using ho-

The transfer operatdr(3) describes how the information modyne detection and comparing the result with the quadra-

B obtained about the properties of the input state makes corture noise of the coherent-state input. This type of
tributions from displaced photon-number states less likely asgerification can be generalized as a projective measurement
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on a set of statepV) satisfying the completeness condition \/— la— B2
for positive-valued operator measures, |B,a)= \/_T(,B)|a>— xp —(1—g?) 5
2 IVivI=1. (14) x|y=B+a(a—p)). (18

The measurement still projects on a well-defined coherent
state, but the coherent field is a function of both the tele-
by portation measuremerg and the verification measurement
«a. It is therefore possible to reconstruct the correct measure-
P(V)= f d?BI(V|T(B)|wa)%. (15  ment statistics of the input state by referring to the telepor-
tation resultsB as well as to the verification results

This probability distribution is then compared with the input

distribution of the verification variabl¢. However, the total VII. CONCLUSIONS
process of teleportation and verification may be summarized
in a single measurement @ andV. If the information in-
herent in the measurement resglis retained, the complete
measurement performed on the input state is defined by t
projective measurement basjs,V) given by

The probability of obtaining a verification resultis given

In conclusion, the quantum teleportation of an input state
|#) can be described by a measurement-dependent transfer

h%t)erator'AI'(,B) that modifies the quantum-state statistics ac-
cording to the information obtained about the input state
|) in the measurement 8. The statistics of subsequent

|B,V)=?(ﬂ)|v). (16) verification measurements may be derived by directly apply-

ing the transfer operatdr(3) to the state$V) describing the
The probability distribution over measurement resgitand  projective verification measurement. Quantum information is
verification results/ then reads only lost because the effective measurement bg8i¥/)

does not usually correspond to the eigenstate basis in which

P(B.NV)=[(B.VI¥a) = (VI T(B)|a)|>. (17)  the information has been encoded.

Th f | ; d h While the type of physical information that can be ob-
€ quantum measurement effectively performed on the in tained about the original input field is restricted because

put state is thus composed of the measurement step of U385 me information necessarily “leaks out” in quantum tele-
tum tel_eportation ar_ld the ve_rification step. The fidelity iSportation with limited entanglement, the total information
de_termlned by the difference in the statistics overetween obtained after the verification step still corresponds to the
this two-step measurement and a.d|rect measuremem.of information obtained in an ideal projective measurement.
only. However, the information lost in quantum teleportation he limitations imposed on quantum teleportation by a fidel-
is actually less than is suggested by the average fidelity. | y less than one are thus a direct consequence of the mea-

the telfepolrtatlon resufs '3 consfl_der_ed as well, thﬁ Comb'_na'lsurement information obtained about the transferred state in
tion of teleportation and verification extract the maximalye“meacirement of and can be applied directly to the

amount .Of measurement information permitted in quantg easurements performed after the transfer of the quantum
mechanics and consequently allows a complete statistic ate

characterization of the original input state.

A particularly striking example can be obtained for a veri-
fication scheme using eight-port homodyne detection. In this
case, the verification variable is the coherent fieldnd the One of us(H.F.H) would like to acknowledge support
verification state$V)=1/\w|a) are the associated coherent from the Japanese Society for the Promotion of Science,
states. The effective measurement basis is then given by JSPS.
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