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Fidelity and information in the quantum teleportation of continuous variables
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Ideally, quantum teleportation should transfer a quantum state without distortion and without providing any
information about that state. However, quantum teleportation of continuous electromagnetic-field variables
introduces additional noise, limiting the fidelity of the quantum-state transfer. In this article, the operator
describing the quantum-state transfer is derived. The transfer operator modifies the probability amplitudes of
the quantum state in a shifted photon-number basis by enhancing low photon numbers and suppressing high
photon numbers. This modification of the statistical weight corresponds to a measurement of finite resolution
performed on the original quantum state. The limited fidelity of quantum teleportation is thus shown to be a
direct consequence of the information obtained in the measurement.

PACS number~s!: 03.67.Hk, 42.50.2p
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I. INTRODUCTION

Quantum teleportation is a process by which the quan
state of a system A can be transferred to a remote syste
by exploiting the entanglement between system B and a
erence system R. Ideally, no information is obtained ab
system A, even though the exact relationship between A
R is determined by measuring a set of joint properties o
and R. While the original state of A is lost in this measu
ment, it can be recovered by deducing the relationship
tween A and B from the original entanglement between
and R and the measured entanglement between A and B

The original proposal of quantum teleportation@1# as-
sumed maximal entanglement between B and R. Howeve
is also possible to realize quantum teleportation with n
maximal entanglement. In particular, such a teleportat
scheme has been applied to the quantum states of light
modes @2,3#, where maximal entanglement is impossib
since it would require infinite energy. A schematic setup
this scheme is shown in Fig. 1. This approach to quan
teleportation has inspired a number of investigations into
dependence of the teleportation process on the details o
physical setup@4–6#. In this context, it is desirable to de
velop compact theoretical formulations describing the effe
of this teleportation scheme on the transferred quantum s

Originally, the teleportation process for continuous va
ables has been formulated in terms of Wigner functions@2#.
Recently, a description in the discrete photon-number b
has been provided as well@7#. In the following, the latter
approach will be reformulated using the concept of displa
photon-number states, and a general transfer oper
T̂(x2 ,y1) will be derived for the quantum teleportation of
state associated with a measurement result ofx2 and y1 .
This transfer operator describes the modifications that
quantum state suffers in the teleportation as well as the
formation obtained about the quantum state due to the fi
entanglement. It is shown that this type of quantum telep
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tation resembles a nondestructive measurement of light fi
coherence with a measurement resolution given by the
tanglement of B and R.

II. MEASURING THE ENTANGLEMENT OF UNRELATED
FIELD MODES

The initial step in quantum teleportation requires a m
surement of the entanglement between input system A
reference system R. Ideally, this projective measurem
does not provide any information about properties of A
itself.

In the case of continuous field variables@2,3#, the mea-
sured variables are the differencex̂25 x̂A2 x̂R and the sum
ŷ15 ŷA1 ŷR of the orthogonal quadrature components. T
eigenstates of these two commuting variables may be
pressed in terms of the photon-number statesunA ;nR& as

FIG. 1. Schematic representation of the quantum teleporta
scheme.
©2000 The American Physical Society04-1
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ub~A,R!&5
1

Ap
(
n50

`

D̂A~b!un;n&

with x̂2ub~A,R!&5Re~b!ub~A,R!&

and ŷ1ub~A,R!&5Im~b!ub~A,R!&, ~1!

where the operatorD̂A(b) is the displacement operator ac
ing on the input field A, such that

D̂A~b!5exp~2i Im~b!x̂A22i Re~b!ŷA!

with D̂A
†~b!x̂AD̂A~b!5 x̂A1Re~b!

and D̂A
†~b!ŷAD̂A~b!5 ŷA1Im~b!. ~2!

Of course, the coherent shift could also be applied to fiel
instead of field A. However, in the representation given
Eq. ~1!, it is easy to identify the quantum state associa
with a photon number of the reference field R.

If the quantum stateucR& of the reference field R is
known, the measurement result provides information on
quantum stateucA& of field A through the probability distri-
bution P(b) given by

P~b!5
1

p U(
n50

`

^cAuD̂A~b!un&^cRun&U2

5
1

p
u^cAuD̂A~b!ucR* &u2,

where ucR* &5 (
n50

`

^nucR&* un&. ~3!

Effectively, the measurement of entanglement projects
quantum state of field A onto a complete nonorthogo
measurement basis given by the displaced reference s
ucR* &. The completeness of this measurement basis is g
by

1

pE d2b D̂~b!ucR* &^cR* uD̂†~b!51̂. ~4!

In the case of ‘‘classical’’ teleportation, the reference field
is in the quantum-mechanical vacuum stateun50&. There-
fore, the measurement of the field entanglement given bb
projects the incoming signal field A directly onto a displac
vacuum state.

III. QUANTUM TELEPORTATION

In the general case of quantum teleportation, the quan
state of the reference field R cannot be determined loc
because of its entanglement with the remote field B. T
indicates that the type of measurement performed is
known until the remote system is measured as well. T
meaning of the measurement resultb depends on the un
known properties of the remote field B. The entangled re
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ence field R thus provides the means to choose betw
complementary measurement types even after the mea
ment interaction between input field A and reference field
has occurred.

Within the quantum-state formalism, the initial state
the entangled fields R and B may be written as@7,8#

uq~R,B!&5A12q2(
n50

`

qnun;n&. ~5!

Thus, the photon numbers of the reference field R and
remote field B are always equal. However, low photon nu
bers are more likely than high photon numbers, so the tw
mode entanglement is limited by the information availab
about the photon number of each mode. In a measureme
the entanglement between field A and field R, this inform
tion about R is converted into measurement informat
about A, thus causing a decrease in fidelity as required by
uncertainty principle.

A measurement of the entanglement between field A
field R projects the product stateucA& ^ uq(R,B)& into a
quantum state of the remote field B given by

ucB~b!&5A12q2

p (
n50

`

qnun&^nuD̂A~2b!ucA&, ~6!

where the measurement probabilityP(b) is given by
^cB(b)ucB(b)&. Thus the measurement determines the d
placementb between field A and field B, resulting in a quan
tum stateucB(b)& that appears to be a copy of the input sta
ucA&, displaced by2b. However, the measurement inform
tion obtained because low photon numbers are more lik
than high photon numbers in both R and B causes a sta
cal modification of the probability amplitudes of the photo
number states in the remote field B.

The final step in quantum teleportation is the reconstr
tion of the initial state from the remote field by reversal
the displacement. The output state then reads

ucout~b!&5T̂~b!ucA&

with T̂~b!5A12q2

p (
n50

`

qnD̂A~b!un&^nuD̂A~2b!.

~7!

Note that this output state is not normalized beca
^cout(b)ucout(b)& defines the probability of the measur
ment resultsb. The complete process of quantum telepor
tion is thus summed up by the transfer operatorsT̂(b).

IV. TRANSFER OPERATOR PROPERTIES

The transfer operatorT̂(b) determines not only the prop
erties of the quantum state after the teleportation proc
following a measurement result ofb for the field entangle-
ment between A and R, but also the probability of obtaini
the resultb itself. The probability distributionP(b) is given
by
4-2



t
-

el
-
e

-
it

ee
t

ua
t

a

of
e

-
u
o

fi

el
in
e

n
co

a

the
ne

the
for
tum

e re-
nt.
an-

n
ator
asy

ds

hted
ose

a
tum

tate
m
ent

a
t-
re

t of
en

ring
her
the
te.
ame
the
re-
are

us
-

ho-
ra-
of
ent

FIDELITY AND INFORMATION IN THE QUANTUM . . . PHYSICAL REVIEW A 62 062304
P~b!5^cAuT̂2~b!ucA&

5
12q2

p (
n50

`

q2n^nuD̂A~2b!ucA&u2. ~8!

Since the prefactorqn is larger for smalln, a measuremen
result of b is more likely if the photon number of the dis
placed stateD̂A(2b)ucA& is low. It is possible to identify
the displaced photon number with the square of the fi
difference betweenb and the actual field value of A. There
fore, a measurement result ofb makes large deviations of th
field A from this value ofb unlikely.

The transfer operatorT̂(b) also determines the relation
ship between the input state and the output state. Since
the goal of quantum teleportation to achieve identity betw
the input state and the output state, the overlap between
two states may be used as a measure of the fidelity of q
tum teleportation. For a single teleportation event associa
with a measurement result ofb, this fidelity is given by

F~b!5
1

P~b!
u^cAuT̂~b!ucA&u2. ~9!

For instance, the fidelity of quantum teleportation for
photon-number state displaced byb is exactly 1. However, it
is unlikely thatb will be exactly equal to the displacement
the photon-number state to be teleported, so the averag
delity will be much lower. The average fidelityFav. is given
by

Fav.5E d2b P~b!F~b!5E d2bu^cAuT̂~b!ucA&u2.

~10!

Since the transfer operatorT̂(b) is different for each telepor
tation event, the output field states show unpredictable fl
tuations. These fluctuations may be expressed in terms
density matrix

r̂out5E d2bT̂~b!ucA&^cAuT̂~b!. ~11!

In terms of this mixed-state density matrix, the average
delity reads

Fav.5^cAur̂outucA&. ~12!

However, the measurement informationb is available as
classical information, so the density matrixr̂out actually un-
derestimates the information available about the output fi
In particular, a verifier checking the fidelity of the transfer
B can know the exact output state based on the knowledg
the input state and the measurement resultb.

V. FIDELITY AND INFORMATION

The transfer operatorT̂(b) describes how the informatio
b obtained about the properties of the input state makes
tributions from displaced photon-number states less likely
06230
d

is
n
he
n-

ed

fi-

c-
f a

-

d.

of

n-
s

the displaced photon-number increases. The changes in
quantum state that are responsible for a fidelity below o
correspond to this change in the statistical weight of
quantum-state components. This situation is typical
quantum-mechanical measurements, since maximal quan
coherence between two components of the quantum-stat
quires equal probability amplitudes for each compone
Making one quantum-state component more likely than
other necessarily diminishes quantum coherence@9#.

In order to clarify the type of measurement informatio
obtained, it is convenient to represent the transfer oper
T̂(b) in terms of coherent states. This representation is e
to obtain by using the formal analogy ofT̂(b) with a thermal
photon-number distribution. The result reads

T̂~b!5A12q2

p3q2 E d2a expX2S 12q

q D ua2bu2Cua&^au.

~13!

In the limit of q→0, the transfer operator thus correspon
to a projection operator on the coherent stateub&. As q in-
creases, the operator corresponds to a mixture of weig
projections that prefer coherent states with field values cl
to b, distorting the field distribution of the input state.

The information obtained in the measurement ofb about
the original quantum stateucA& is therefore information
about the coherent field amplitude. The loss of fidelity is
necessary consequence of the projective nature of quan
measurements@9,10#. If one keeps track of the information
contained in the measurement resultb and combines it with
information obtained from measurements of the output s
ucout(b)&, the complete process of information transfer fro
A to B can be described by a single quantum measurem
applied directly to the original input stateucA&.

VI. VERIFICATION OF QUANTUM-STATE STATISTICS

The output of a single teleportation process involving
pure-state inputucA& results in a well-defined pure-state ou
put T̂(b)ucA&. Since the statistical properties of this state a
modified by the information obtained in the measuremen
b, the output state is different from the input state, as giv
by the fidelity F(b) defined by Eq.~9!. However, this dif-
ference shows only in the statistics obtained by measu
the output of an ensemble of identical input states. In ot
words, there is no single measurement to tell us whether
output quantum state is actually identical to the input sta
Nonorthogonal quantum states may always produce the s
measurement results. The verification process following
quantum teleportation is therefore a nontrivial process
quiring the comparison of measurement statistics that
generally noisy, even for a fidelity of one.

In the experimentally realized teleportation of continuo
variables reported in@3#, the verification is achieved by mea
suring one quadrature component of the light field using
modyne detection and comparing the result with the quad
ture noise of the coherent-state input. This type
verification can be generalized as a projective measurem
4-3
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on a set of statesuV& satisfying the completeness conditio
for positive-valued operator measures,

(
V

uV&^Vu51̂. ~14!

The probability of obtaining a verification resultV is given
by

P~V!5E d2bu^VuT̂~b!ucA&u2. ~15!

This probability distribution is then compared with the inp
distribution of the verification variableV. However, the total
process of teleportation and verification may be summari
in a single measurement ofb and V. If the information in-
herent in the measurement resultb is retained, the complete
measurement performed on the input state is defined by
projective measurement basisub,V& given by

ub,V&5T̂~b!uV&. ~16!

The probability distribution over measurement resultsb and
verification resultsV then reads

P~b,V!5u^b,VucA&u25u^VuT̂~b!ucA&u2. ~17!

The quantum measurement effectively performed on the
put state is thus composed of the measurement step of q
tum teleportation and the verification step. The fidelity
determined by the difference in the statistics overV between
this two-step measurement and a direct measurementV
only. However, the information lost in quantum teleportati
is actually less than is suggested by the average fidelity
the teleportation resultb is considered as well, the combina
tion of teleportation and verification extract the maxim
amount of measurement information permitted in quant
mechanics and consequently allows a complete statis
characterization of the original input state.

A particularly striking example can be obtained for a ve
fication scheme using eight-port homodyne detection. In
case, the verification variable is the coherent fielda and the
verification statesuV&51/Apua& are the associated cohere
states. The effective measurement basis is then given b
, a

H.
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ub,a&5
1

Ap
T̂~b!ua&5

A12q2

p
expS 2~12q2!

ua2bu2

2 D
3ug5b1q~a2b!&. ~18!

The measurement still projects on a well-defined coher
state, but the coherent fieldg is a function of both the tele-
portation measurementb and the verification measureme
a. It is therefore possible to reconstruct the correct meas
ment statistics of the input state by referring to the telep
tation resultsb as well as to the verification resultsa.

VII. CONCLUSIONS

In conclusion, the quantum teleportation of an input st
ucA& can be described by a measurement-dependent tra
operatorT̂(b) that modifies the quantum-state statistics a
cording to the information obtained about the input st
ucA& in the measurement ofb. The statistics of subsequen
verification measurements may be derived by directly app
ing the transfer operatorT̂(b) to the statesuV& describing the
projective verification measurement. Quantum information
only lost because the effective measurement basisub,V&
does not usually correspond to the eigenstate basis in w
the information has been encoded.

While the type of physical information that can be o
tained about the original input field is restricted becau
some information necessarily ‘‘leaks out’’ in quantum tel
portation with limited entanglement, the total informatio
obtained after the verification step still corresponds to
information obtained in an ideal projective measureme
The limitations imposed on quantum teleportation by a fid
ity less than one are thus a direct consequence of the m
surement information obtained about the transferred stat
the measurement ofb and can be applied directly to th
measurements performed after the transfer of the quan
state.
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